Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Biochem Biophys Res Commun ; 710: 149881, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38583233

RESUMO

Maackia amurensis lectins serve as research and botanical agents that bind to sialic residues on proteins. For example, M. amurensis seed lectin (MASL) targets the sialic acid modified podoplanin (PDPN) receptor to suppress arthritic chondrocyte inflammation, and inhibit tumor cell growth and motility. However, M. amurensis lectin nomenclature and composition are not clearly defined. Here, we sought to definitively characterize MASL and its effects on tumor cell behavior. We utilized SDS-PAGE and LC-MS/MS to find that M. amurensis lectins can be divided into two groups. MASL is a member of one group which is composed of subunits that form dimers, evidently mediated by a cysteine residue in the carboxy region of the protein. In contrast to MASL, members of the other group do not dimerize under nonreducing conditions. These data also indicate that MASL is composed of 4 isoforms with an identical amino acid sequence, but unique glycosylation sites. We also produced a novel recombinant soluble human PDPN receptor (shPDPN) with 17 threonine residues glycosylated with sialic acid moieties with potential to act as a ligand trap that inhibits OSCC cell growth and motility. In addition, we report here that MASL targets PDPN with very strong binding kinetics in the nanomolar range. Moreover, we confirm that MASL can inhibit the growth and motility of human oral squamous cell carcinoma (OSCC) cells that express the PDPN receptor. Taken together, these data characterize M. amurensis lectins into two major groups based on their intrinsic properties, clarify the composition of MASL and its subunit isoform sequence and glycosylation sites, define sialic acid modifications on the PDPN receptor and its ability to act as a ligand trap, quantitate MASL binding to PDPN with KD in the nanomolar range, and verify the ability of MASL to serve as a potential anticancer agent.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ácido N-Acetilneuramínico/metabolismo , Maackia/química , Maackia/metabolismo , Neoplasias Bucais/patologia , Cromatografia Líquida , Ligantes , Espectrometria de Massas em Tandem , Lectinas/farmacologia , Antineoplásicos/farmacologia , Análise de Sequência , Movimento Celular
2.
Mol Carcinog ; 61(7): 677-689, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35472679

RESUMO

The Src tyrosine kinase is a strong tumor promotor. Over a century of research has elucidated fundamental mechanisms that drive its oncogenic potential. Src phosphorylates effector proteins to promote hallmarks of tumor progression. For example, Src associates with the Cas focal adhesion adaptor protein to promote anchorage independent cell growth. In addition, Src phosphorylates Cas to induce Pdpn expression to promote cell migration. Pdpn is a transmembrane receptor that can independently increase cell migration in the absence of oncogenic Src kinase activity. However, to our knowledge, effects of Src kinase activity on anchorage independent cell growth and migration have not been examined in the absence of Pdpn expression. Here, we analyzed the effects of an inducible Src kinase construct in knockout cells with and without exogenous Pdpn expression on cell morphology migration and anchorage independent growth. We report that Src promoted anchorage independent cell growth in the absence of Pdpn expression. In contrast, Src was not able to promote cell migration in the absence of Pdpn expression. In addition, continued Src kinase activity was required for cells to assume a transformed morphology since cells reverted to a nontransformed morphology upon cessation of Src kinase activity. We also used phosphoproteomic analysis to identify 28 proteins that are phosphorylated in Src transformed cells in a Pdpn dependent manner. Taken together, these data indicate that Src utilizes Pdpn to promote transformed cell growth and motility in complementary, but parallel, as opposed to serial, pathways.


Assuntos
Neoplasias , Quinases da Família src , Adesão Celular , Movimento Celular , Humanos , Fosforilação , Quinases da Família src/genética , Quinases da Família src/metabolismo
3.
Cell Commun Signal ; 20(1): 19, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177067

RESUMO

BACKGROUND: The Src tyrosine kinase phosphorylates effector proteins to induce expression of the podoplanin (PDPN) receptor in order to promote tumor progression. However, nontransformed cells can normalize the growth and morphology of neighboring transformed cells. Transformed cells must escape this process, called "contact normalization", to become invasive and malignant. Contact normalization requires junctional communication between transformed and nontransformed cells. However, specific junctions that mediate this process have not been defined. This study aimed to identify junctional proteins required for contact normalization. METHODS: Src transformed cells and oral squamous cell carcinoma cells were cultured with nontransformed cells. Formation of heterocellular adherens junctions between transformed and nontransformed cells was visualized by fluorescent microscopy. CRISPR technology was used to produce cadherin deficient and cadherin competent nontransformed cells to determine the requirement for adherens junctions during contact normalization. Contact normalization of transformed cells cultured with cadherin deficient or cadherin competent nontransformed cells was analyzed by growth assays, immunofluorescence, western blotting, and RNA-seq. In addition, Src transformed cells expressing PDPN under a constitutively active exogenous promoter were used to examine the ability of PDPN to override contact normalization. RESULTS: We found that N-cadherin (N-Cdh) appeared to mediate contact normalization. Cadherin competent cells that expressed N-Cdh inhibited the growth of neighboring transformed cells in culture, while cadherin deficient cells failed to inhibit the growth of these cells. Results from RNA-seq analysis indicate that about 10% of the transcripts affected by contact normalization relied on cadherin mediated communication, and this set of genes includes PDPN. In contrast, cadherin deficient cells failed to inhibit PDPN expression or normalize the growth of adjacent transformed cells. These data indicate that nontransformed cells formed heterocellular cadherin junctions to inhibit PDPN expression in adjacent transformed cells. Moreover, we found that PDPN enabled transformed cells to override the effects of contact normalization in the face of continued N-Cdh expression. Cadherin competent cells failed to normalize the growth of transformed cells expressing PDPN under a constitutively active exogenous promoter. CONCLUSIONS: Nontransformed cells form cadherin junctions with adjacent transformed cells to decrease PDPN expression in order to inhibit tumor cell proliferation. Cancer begins when a single cell acquires changes that enables them to form tumors. During these beginning stages of cancer development, normal cells surround and directly contact the cancer cell to prevent tumor formation and inhibit cancer progression. This process is called contact normalization. Cancer cells must break free from contact normalization to progress into a malignant cancer. Contact normalization is a widespread and powerful process; however, not much is known about the mechanisms involved in this process. This work identifies proteins required to form contacts between normal cells and cancer cells, and explores pathways by which cancer cells override contact normalization to progress into malignant cancers. Video Abstract.


Assuntos
Antígenos CD , Caderinas , Neoplasias Bucais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Junções Aderentes/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Transformação Celular Neoplásica , Humanos , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
4.
Exp Cell Res ; 403(1): 112594, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33823179

RESUMO

COVID-19 was declared an international public health emergency in January, and a pandemic in March of 2020. There are over 125 million confirmed COVID-19 cases that have caused over 2.7 million deaths worldwide as of March 2021. COVID-19 is caused by the SARS-CoV-2 virus. SARS-CoV-2 presents a surface "spike" protein that binds to the ACE2 receptor to infect host cells. In addition to the respiratory tract, SARS-Cov-2 can also infect cells of the oral mucosa, which also express the ACE2 receptor. The spike and ACE2 proteins are highly glycosylated with sialic acid modifications that direct viral-host interactions and infection. Maackia amurensis seed lectin (MASL) has a strong affinity for sialic acid modified proteins and can be used as an antiviral agent. Here, we report that MASL targets the ACE2 receptor, decreases ACE2 expression and glycosylation, suppresses binding of the SARS-CoV-2 spike protein, and decreases expression of inflammatory mediators by oral epithelial cells that cause ARDS in COVID-19 patients. In addition, we report that MASL also inhibits SARS-CoV-2 infection of kidney epithelial cells in culture. This work identifies MASL as an agent with potential to inhibit SARS-CoV-2 infection and COVID-19 related inflammatory syndromes.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Lectinas/farmacologia , Boca/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/efeitos dos fármacos , Progressão da Doença , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Humanos , Maackia/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
J Cancer Res Clin Oncol ; 147(2): 445-457, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33205348

RESUMO

PURPOSE: Oral cancer causes over 120,000 deaths annually and affects the quality of life for survivors. Over 90% of oral cancers are derived from oral squamous cell carcinoma cells (OSCCs) which are generally resistant to standard cytotoxic chemotherapy agents. OSCC cells often exhibit increased TGFß and PDPN receptor activity compared to nontransformed oral epithelial cells. Maackia amurensis seed lectin (MASL) can target the PDPN receptor and has been identified as a novel agent that can be used to treat oral cancer. However, mechanisms by which MASL inhibits OSCC progression are not yet clearly defined. METHODS: Here, we performed cell migration and cytotoxicity assays to assess the effects of MASL on OSCC motility and viability at physiologically relevant concentrations. We then performed comprehensive transcriptome analysis combined with transcription factor reporter assays to investigate the how MASL affects OSCC gene expression at these concentration. Key data were then confirmed by western blotting to evaluate the effects of MASL on gene expression and kinase signaling activity at the protein level. RESULTS: MASL significantly affected the expression of about 27% of approximately 15,000 genes found to be expressed by HSC-2 cells used to model OSCC cells in this study. These genes affected by MASL include members of the TGFß-SMAD, JAK-STAT, and Wnt-ßCTN signaling pathways. In particular, MASL decreased expression of PDPN, SOX2, and SMAD5 at the RNA and protein levels. MASL also inhibited SMAD and MAPK activity, and exhibited potential for combination therapy with doxorubicin and 5-fluorouracil. CONCLUSIONS: Taken together, results from this study indicate that MASL decreases activity of JAK-STAT, TGFß-SMAD, and Wnt-ßCTN signaling pathways to inhibit OSCC growth and motility. These data suggest that further studies should be undertaken to determine how MASL may also be used alone and in combination with other agents to treat oral cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Maackia/química , Neoplasias Bucais/tratamento farmacológico , Lectinas de Plantas/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Humanos , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Lectinas de Plantas/uso terapêutico , Fatores de Transcrição SOXB1/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Transcrição Gênica/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
6.
Sci Rep ; 10(1): 21959, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319820

RESUMO

Breast cancer is the leading cause of cancer death among women worldwide. Like other cancers, mammary carcinoma progression involves acidification of the tumor microenvironment, which is an important factor for cancer detection and treatment strategies. However, the effects of acidity on mammary carcinoma cell morphology and phenotype have not been thoroughly characterized. Here, we evaluated fundamental effects of environmental acidification on mammary carcinoma cells in standard two-dimensional cultures and three-dimensional spheroids. Acidification decreased overall mammary carcinoma cell viability, while increasing their resistance to the anthracycline doxorubicin. Environmental acidification also increased extracellular vesicle production by mammary carcinoma cells. Conditioned media containing these vesicles appeared to increase fibroblast motility. Acidification also increased mammary carcinoma cell motility when cultured with fibroblasts in spheroids. Taken together, results from this study suggest that environmental acidification induces drug resistance and extracellular vesicle production by mammary carcinoma cells that promote tumor expansion.


Assuntos
Ácidos/química , Concentração de Íons de Hidrogênio , Neoplasias Mamárias Animais/patologia , Esferoides Celulares/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Técnicas In Vitro , Neoplasias Mamárias Animais/metabolismo , Microambiente Tumoral
7.
Drug Discov Today ; 24(1): 241-249, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30077780

RESUMO

Cancer and arthritis present an enormous challenge to society. They share pathogenic pathways that involve extracellular matrix degradation, tissue invasion, and inflammation. Most cancer and arthritis treatments affect normal cell function to cause significant adverse effects in patients. Specific pathways that promote cancer and arthritis progression must be elucidated to design more targeted and effective therapeutics. The Src kinase and podoplanin (PDPN) receptor are upregulated in cancer cells, fibroblasts, synoviocytes, and immune cells that increase tissue invasion and inflammation to promote both cancer and arthritis. In this review, we discuss how Src and PDPN forge a path to tissue destruction, and how they can serve as targets for therapeutics to combat cancer and arthritis.


Assuntos
Artrite/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias/metabolismo , Quinases da Família src/metabolismo , Animais , Humanos
8.
Cancer Sci ; 109(5): 1292-1299, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29575529

RESUMO

Podoplanin (PDPN) is a transmembrane receptor glycoprotein that is upregulated on transformed cells, cancer associated fibroblasts and inflammatory macrophages that contribute to cancer progression. In particular, PDPN increases tumor cell clonal capacity, epithelial mesenchymal transition, migration, invasion, metastasis and inflammation. Antibodies, CAR-T cells, biologics and synthetic compounds that target PDPN can inhibit cancer progression and septic inflammation in preclinical models. This review describes recent advances in how PDPN may be used as a biomarker and therapeutic target for many types of cancer, including glioma, squamous cell carcinoma, mesothelioma and melanoma.


Assuntos
Antineoplásicos/farmacologia , Glicoproteínas de Membrana/genética , Neoplasias/genética , Regulação para Cima , Antineoplásicos/uso terapêutico , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Progressão da Doença , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Glicoproteínas de Membrana/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
Oral Oncol ; 78: 126-136, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29496040

RESUMO

Oral cancer has become one of the most aggressive types of cancer, killing 140,000 people worldwide every year. Current treatments for oral cancer include surgery and radiation therapies. These procedures can be very effective; however, they can also drastically decrease the quality of life for survivors. New chemotherapeutic treatments are needed to more effectively combat oral cancer. The transmembrane receptor podoplanin (PDPN) has emerged as a functionally relevant oral cancer biomarker and chemotherapeutic target. PDPN expression promotes tumor cell migration leading to oral cancer invasion and metastasis. Here, we describe the role of PDPN in oral squamous cell carcinoma progression, and how it may be exploited to prevent and treat oral cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias Bucais/metabolismo , Animais , Carcinoma de Células Escamosas/patologia , Humanos , Neoplasias Bucais/patologia
10.
J Tradit Complement Med ; 7(1): 45-49, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28053887

RESUMO

Skin cancer is extremely common, and melanoma causes about 80% of skin cancer deaths. In fact, melanoma kills over 50 thousand people around the world each year, and these numbers are rising. Clearly, standard treatments are not effectively treating melanoma, and alternative therapies are needed to address this problem. Hibiscus tea has been noted to have medicinal properties, including anticancer effects. Extracts from Hibiscus have been shown to inhibit the growth of a variety of cancer cells. In particular, recent studies found that polyphenols extracted from Hibiscus sabdariffa by organic solvents can inhibit melanoma cell growth. However, effects of aqueous extracts from Hibiscus rosa-sinesis flowers, which are commonly used to make traditional medicinal beverages, have not been examined on melanoma cells. Here, we report that aqueous H. rosa-sinesis flower extract contains compounds that inhibit melanoma cell growth in a dose dependent manner at concentrations that did not affect the growth of nontransformed cells. In addition, these extracts contain low molecular weight growth inhibitory compounds below 3 kD in size that combine with larger compounds to more effectively inhibit melanoma cell growth. Future work should identify these compounds, and evaluate their potential to prevent and treat melanoma and other cancers.

11.
Oncotarget ; 7(31): 49998-50016, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27374178

RESUMO

Extracellular vesicles play important roles in tumor development. Many components of these structures, including microvesicles and exosomes, have been defined. However, mechanisms by which extracellular vesicles affect tumor progression are not fully understood. Here, we investigated vesicular communication between mammary carcinoma cells and neighboring nontransformed mammary fibroblasts. Nonbiased proteomic analysis found that over 1% of the entire proteome is represented in these vesicles, with the neuroblast differentiation associated protein AHNAK and annexin A2 being the most abundant. In particular, AHNAK was found to be the most prominent component of these vesicles based on peptide number, and appeared necessary for their formation. In addition, we report here that carcinoma cells produce vesicles that promote the migration of recipient fibroblasts. These data suggest that AHNAK enables mammary carcinoma cells to produce and release extracellular vesicles that cause disruption of the stroma by surrounding fibroblasts. This paradigm reveals fundamental mechanisms by which vesicular communication between carcinoma cells and stromal cells can promote cancer progression in the tumor microenvironment.


Assuntos
Neoplasias da Mama/metabolismo , Carcinoma/metabolismo , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Anexina A2/biossíntese , Comunicação Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Cromatografia Líquida , Técnicas de Cocultura , Exossomos/metabolismo , Humanos , Imuno-Histoquímica , Células MCF-7 , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Proteoma , Proteômica/métodos , Células Estromais/metabolismo , Microambiente Tumoral
12.
Carcinogenesis ; 36 Suppl 1: S2-18, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106139

RESUMO

As part of the Halifax Project, this review brings attention to the potential effects of environmental chemicals on important molecular and cellular regulators of the cancer hallmark of evading growth suppression. Specifically, we review the mechanisms by which cancer cells escape the growth-inhibitory signals of p53, retinoblastoma protein, transforming growth factor-beta, gap junctions and contact inhibition. We discuss the effects of selected environmental chemicals on these mechanisms of growth inhibition and cross-reference the effects of these chemicals in other classical cancer hallmarks.


Assuntos
Exposição Ambiental/efeitos adversos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Animais , Humanos , Transdução de Sinais/efeitos dos fármacos
13.
Carcinogenesis ; 36 Suppl 1: S254-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106142

RESUMO

Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos Ambientais/efeitos adversos , Exposição Ambiental/efeitos adversos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Animais , Humanos
14.
Exp Cell Res ; 335(1): 115-22, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25959509

RESUMO

Podoplanin (PDPN) is a transmembrane glycoprotein that promotes tumor cell migration, invasion, and cancer metastasis. In fact, PDPN expression is induced in many types of cancer. Thus, PDPN has emerged as a functionally relevant cancer biomarker and chemotherapeutic target. PDPN contains 2 intracellular serine residues that are conserved between species ranging from mouse to humans. Recent studies indicate that protein kinase A (PKA) can phosphorylate PDPN in order to inhibit cell migration. However, the number and identification of specific residues phosphorylated by PKA have not been defined. In addition, roles of other kinases that may phosphorylate PDPN to control cell migration have not been investigated. We report here that cyclin dependent kinase 5 (CDK5) can phosphorylate PDPN in addition to PKA. Moreover, results from this study indicate that PKA and CDK5 cooperate to phosphorylate PDPN on both intracellular serine residues to decrease cell motility. These results provide new insight into PDPN phosphorylation dynamics and the role of PDPN in cell motility. Understanding novel mechanisms of PDPN intracellular signaling could assist with designing novel targeted chemotherapeutic agents and procedures.


Assuntos
Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Glicoproteínas de Membrana/metabolismo , Serina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Glicoproteínas de Membrana/genética , Camundongos , Fosforilação , Estrutura Terciária de Proteína , Serina/genética
15.
Oncotarget ; 6(11): 9045-60, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25826087

RESUMO

Podoplanin (PDPN) is a unique transmembrane receptor that promotes tumor cell motility. Indeed, PDPN may serve as a chemotherapeutic target for primary and metastatic cancer cells, particularly oral squamous cell carcinoma (OSCC) cells that cause most oral cancers. Here, we studied how a monoclonal antibody (NZ-1) and lectin (MASL) that target PDPN affect human OSCC cell motility and viability. Both reagents inhibited the migration of PDPN expressing OSCC cells at nanomolar concentrations before inhibiting cell viability at micromolar concentrations. In addition, both reagents induced mitochondrial membrane permeability transition to kill OSCC cells that express PDPN by caspase independent nonapoptotic necrosis. Furthermore, MASL displayed a surprisingly robust ability to target PDPN on OSCC cells within minutes of exposure, and significantly inhibited human OSCC dissemination in zebrafish embryos. Moreover, we report that human OSCC cells formed tumors that expressed PDPN in mice, and induced PDPN expression in infiltrating host murine cancer associated fibroblasts. Taken together, these data suggest that antibodies and lectins may be utilized to combat OSCC and other cancers that express PDPN.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/patologia , Glicoproteínas de Membrana/antagonistas & inibidores , Terapia de Alvo Molecular , Neoplasias Bucais/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Fito-Hemaglutininas/farmacologia , Administração Oral , Animais , Animais Geneticamente Modificados , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma de Células Escamosas/virologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/fisiologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Neoplasias Bucais/virologia , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/fisiologia , Papillomaviridae/isolamento & purificação , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Fito-Hemaglutininas/administração & dosagem , Fito-Hemaglutininas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra/embriologia
16.
J Neuropathol Exp Neurol ; 74(1): 64-74, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25470350

RESUMO

Reactive astrogliosis is associated with many pathologic processes in the central nervous system, including gliomas. The glycoprotein podoplanin (PDPN) is upregulated in malignant gliomas. Using a syngeneic intracranial glioma mouse model, we show that PDPN is highly expressed in a subset of glial fibrillary acidic protein-positive astrocytes within and adjacent to gliomas. The expression of PDPN in tumor-associated reactive astrocytes was confirmed by its colocalization with the astrocytic marker S100ß and with connexin43, a major astrocytic gap junction protein. To determine whether the increase in PDPN is a general feature of gliosis, we used 2 mouse models in which astrogliosis was induced either by a needle injury or ischemia and observed similar upregulation of PDPN in reactive astrocytes in both models. Astrocytic PDPN was also found to be coexpressed with nestin, an intermediate filament marker for neural stem/progenitor cells. Our findings confirm that expression of PDPN is part of the normal host response to brain injury and gliomas, and suggest that it may be a novel cell surface marker for a specific population of reactive astrocytes in the vicinity of gliomas and nonneoplastic brain lesions. The findings also highlight the heterogeneity of glial fibrillary acidic protein-positive astrocytes in reactive gliosis.


Assuntos
Lesões Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/patologia , Gliose/metabolismo , Glicoproteínas de Membrana/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Conexina 43/metabolismo , Modelos Animais de Doenças , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Nestina/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
17.
J Biol Chem ; 288(17): 12215-21, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23530051

RESUMO

Podoplanin (PDPN) is a transmembrane receptor that affects the activities of Rho, ezrin, and other proteins to promote tumor cell motility, invasion, and metastasis. PDPN is found in many types of cancer and may serve as a tumor biomarker and chemotherapeutic target. The intracellular region of PDPN contains only two serines, and these are conserved in mammals including mice and humans. We generated cells from the embryos of homozygous null Pdpn knock-out mice to investigate the relevance of these serines to cell growth and migration on a clear (PDPN-free) background. We report here that one or both of these serines can be phosphorylated by PKA (protein kinase A). We also report that conversion of these serines to nonphosphorylatable alanine residues enhances cell migration, whereas their conversion to phosphomimetic aspartate residues decreases cell migration. These results indicate that PKA can phosphorylate PDPN to decrease cell migration. In addition, we report that PDPN expression in fibroblasts causes them to facilitate the motility and viability of neighboring melanoma cells in coculture. These findings shed new light on how PDPN promotes cell motility, its role in tumorigenesis, and its utility as a functionally relevant biomarker and chemotherapeutic target.


Assuntos
Movimento Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fibroblastos/metabolismo , Melanoma/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Cocultura , Proteínas Quinases Dependentes de AMP Cíclico/genética , Fibroblastos/patologia , Melanoma/genética , Melanoma/patologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Fosforilação/genética , Serina/genética , Serina/metabolismo
18.
Genes Cancer ; 3(5-6): 426-35, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23226580

RESUMO

The role of Src in tumorigenesis has been extensively studied since the work of Peyton Rous over a hundred years ago. Src is a non-receptor tyrosine kinase that plays key roles in signaling pathways controlling tumor cell growth and migration. Src regulates the activities of numerous molecules to induce cell transformation. However, transformed cells do not always migrate and realize their tumorigenic potential. They can be normalized by surrounding nontransformed cells by a process called contact normalization. Tumor cells need to override contact normalization to become malignant or metastatic. In this review, we discuss the role of Src in cell migration and contact normalization, with emphasis on Cas and Abl pathways. This paradigm illuminates several chemotherapeutic targets and may lead to the identification of new biomarkers and the development of effective anticancer treatments.

19.
PLoS One ; 7(7): e41845, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844530

RESUMO

Cancer is a leading cause of death of men and women worldwide. Tumor cell motility contributes to metastatic invasion that causes the vast majority of cancer deaths. Extracellular receptors modified by α2,3-sialic acids that promote this motility can serve as ideal chemotherapeutic targets. For example, the extracellular domain of the mucin receptor podoplanin (PDPN) is highly O-glycosylated with α2,3-sialic acid linked to galactose. PDPN is activated by endogenous ligands to induce tumor cell motility and metastasis. Dietary lectins that target proteins containing α2,3-sialic acid inhibit tumor cell growth. However, anti-cancer lectins that have been examined thus far target receptors that have not been identified. We report here that a lectin from the seeds of Maackia amurensis (MASL) with affinity for O-linked carbohydrate chains containing sialic acid targets PDPN to inhibit transformed cell growth and motility at nanomolar concentrations. Interestingly, the biological activity of this lectin survives gastrointestinal proteolysis and enters the cardiovascular system to inhibit melanoma cell growth, migration, and tumorigenesis. These studies demonstrate how lectins may be used to help develop dietary agents that target specific receptors to combat malignant cell growth.


Assuntos
Movimento Celular/efeitos dos fármacos , Transformação Celular Neoplásica , Glicoproteínas de Membrana/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Lectinas de Plantas/farmacologia , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Maackia/química , Melanoma/irrigação sanguínea , Melanoma/dietoterapia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Dados de Sequência Molecular , Necrose/induzido quimicamente , Neovascularização Patológica/dietoterapia , Lectinas de Plantas/química , Lectinas de Plantas/metabolismo , Quinases da Família src/metabolismo
20.
FEBS J ; 277(17): 3502-13, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20637038

RESUMO

Integrin-mediated activation of Cdc42 is essential for cell polarization, whereas the integrin adaptor protein Cas is required for cell migration during wound healing. After phosphorylation on tyrosine residues, Cas recruits the adaptor proteins Crk and Nck to execute integrin-mediated signals. However, the mechanisms leading to Cdc42 activation and its relationship with Cas, Crk and Nck have not been elucidated clearly. In the present study, we demonstrate that Cas utilizes Nck2 to activate Cdc42 and induce cell polarization in response to wounding. By contrast, Cas recruits CrkII to activate Rac1 and promote the extension of cell protrusions needed for cell motility. These results indicate that Cas utilizes Nck2 and CrkII in a coordinated set of distinct pathways leading to cell migration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Polaridade Celular , Proteína Substrato Associada a Crk/metabolismo , Proteínas Oncogênicas/metabolismo , Cicatrização , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Movimento Celular , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-crk/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA